Оптимальный портфель

При оценке эффективности инвестиций производится вычисление реализованной доходности портфеля и сопоставление полученного результата с выбранным базисным показателем. Базисным показателем в данном случае служит некоторая количественная характеристика поведения заранее выбранного набора ценных бумаг. В качестве базисного показателя может быть выбран любой из общеизвестных фондовых индексов, например индекс Standard & Poor's 500 (S& Р 500), или один из облигационных индексов, публикуемых ведущими консалтинговыми компаниями.

Важнейшую роль в управлении инвестициями играет теория оптимального портфеля, связанная с проблемой выбора эффективного портфеля, максимизирующего ожидаемую доходность при некотором, приемлемом для инвестора уровне риска. Теоретико-вероятностные методы позволяют дать определения «ожидаемой доходности» и « риска» портфеля, а статистические данные — получить оценку этих характеристик.

При построении эффективного портфеля будем считать, что инвестор избегает риска, т.е. из двух вариантов инвестирования с одинаковой ожидаемой доходностью, но различными уровнями риска он выберет тот, риск которого меньше. Если инвестор стоит перед выбором одного из эффективных портфелей, то оптимальным портфелем будет наиболее предпочтительный из них.

Гарри Марковиц считается отцом современной «портфельной теории», касающейся методов сбалансирования рисков и экономической выгоды при выборе направлений рискованных инвестиций. Он разработал математическую модель, демонстрирующую, как инвесторы могут максимально снизить риск при заданной ставке доходности. Модель Марковица входит в основы финансов и широко применяется на практике специалистами по управлению инвестиционными портфелями.

Подход Марковица начинается с предположения, что инвестор в настоящий момент времени имеет конкретную сумму денег для инвестирования. Эти деньги будут инвестированы на определенный промежуток времени, который называется периодом владения. В конце периода владения инвестор продает цепные бумаги, которые были куплены в начале периода, после чего либо использует полученный доход на потребление, либо реинвестирует доход в различные ценные бумаги (либо делает то и другое одновременно). Таким образом, подход Марковица может быть рассмотрен как дискретный подход, при котором начало периода обозначается t = 0, а конец периода обозначается t = 1. В момент t = 0 инвестор должен принять решение о покупке конкретных цепных бумаг, которые будут находиться в его портфеле до момента t = 1. Поскольку портфель представляет собой набор различных ценных бумаг, это решение эквивалентно выбору оптимального портфеля из набора возможных портфелей. Поэтому подобную проблему часто называют проблемой выбора инвестиционного портфеля. Принимая решение в момент t = 0, инвестор должен иметь в виду, что доходность ценных бумаг (и, таким образом, доходность портфеля) в предстоящий период владения неизвестна. Однако инвестор может оценить ожидаемую (или среднюю) доходность различных ценных бумаг, основываясь на некоторых предположениях, а затем инвестировать средства в бумагу с наибольшей ожидаемой доходностью. Марковиц отмечает, что это будет в общем неразумным решением, так как типичный инвестор хотя и желает чтобы «доходность была высокой», но одновременно хочет, чтобы «доходность была бы настолько определенной, насколько это возможно». Это означает, что инвестор, стремясь одновременно максимизировать ожидаемую доходность и минимизировать неопределенность, т.е. риск, имеет две противоречащие друг другу цели, которые должны быть сбалансированы при принятии решения о покупке в момент t = 0. Подход Марковица к принятию решения дает возможность адекватно учесть обе эти цели. Следствием наличия двух противоречивых целей является необходимость проведения диверсификации с помощью покупки не одной, а нескольких ценных бумаг.

Перейти на страницу: 1 2 3